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SUMMARY 
A semi-explicit finite difference scheme is proposed to study unsteady two-dimensional, incompressible flow 
past a bluff object at high Reynolds number. The bluff object comes from a class of elliptical cylinders in which 
the aspect ratio and the angle of attack are two controlled parameters. Associated with the streamfunction- 
vorticity formulation, the interior vorticity, streamfunction and wall vorticity are updated in turn for each time 
step. The streamfunction and wall vorticity are solved by means of a multigid method and a projection method 
respectively. In regard to the vorticity transport equation, implicitness is merely associated with the diffusion 
operator, which can be made semi-explicit via approximate factorization. Low-diffusive upwinding is devised to 
handle the convection part. Numerical results are reported for Reynolds numbers up to 40,OOO. Comparisons with 
other numerical or physical experiments are included. 

KEY WORDS: finite difference scheme; prowake co-ordinates; vorticity conditioning; high-order upwinding; semi-explicit 
time marching; bluff object 

1. INTRODUCTION 

The numerical simulation of unsteady two-dimensional, incompressible flow past a bluff object at 
high Reynolds number has been a challenge to computational fluid dynamicists for years. 
Theoretically the bluff object is often modelled as an elliptical cylinder in which the aspect ratio and 
the angle of attack are two controlled parameters. Of this class, flow past a circular cylinder is the 
most oft-cited case. Although the geometry is simple, the flow pattern in the proximity of the circular 
cylinder is full of variety. See for example the works of Bouard and Coutanceau' and LOC and 
Bouard' for the early-stage development and Kawamura and K u w h 3  for the fully developed case. 

As far as numerical simulation is concerned, almost all popular methods such as finite difference, 
finite element, spectral and vortex particles have already been employed and improved in certain 
ways in past years. However, we shall concentrate our attention on the development of finite 
difference schemes. Even within this category one can find that the methodology is also full of variety 
owing to the coexistent advantage and drawback in each individual method. As a consequence one 
can see from the literature some data discrepancy among the common points of interest such as the 
development of the primary unsteady wake, the formation of secondary vortices, the evolution of 
drag and lift coefficients as well as the history of the separation angle. Brief surveys of previous 
works can be found for example in References 2-8. 
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The progress in numerical algorithms is of course accompanied by the remarkable advance in 
computer power. The combined efforts have moved the effective Reynolds number up several orders 
in magnitude during past decades. As more and more complex phenomena are revealed, it certainly 
continues to be an active research area. 

Finite difference schemes are preferred here because they feature in ease of algorithm design and 
programming, especially when one wants to take advantage of modem computing facilities such as 
vectorisation and parallelism. Prior to using this feature, we have to solve certain basic issues on the 
algorithmic side, however. Similar issues also appear in any other preferred method. 

In conjunction with the streamfunction-vorticity formulation of the Navier-Stokes equations we 
are concerned for example with the grid generation, upwinding technique, wall vorticity condition 
and stable time-marching procedure, which has minor impact on speed-up considerations such as 
multigrid and vectorization. These topics have certainly been addressed by many authors but without 
a unified approach. 

In this work we shall make a contribution to these points and propose a semi-explicit scheme which 
improves some ideas used in our previous  work^.^^'^ By semi-explicit we mean that the set of linear 
equations related to the semi-implicit treatment of the vorticity transport equation can be solved 
directly via a time-independent approximate factorization. Both early-stage and long-term 
simulations are performed for flow past an elliptical cylinder with various combinations of aspect 
ratio and angle of attack at Reynolds numbers up to 4 x lo4. Comparisons with other numerical or 
physical experiments are included. 

2. PROBLEM FORMULATION 

In this work we shall consider a uniform incompressible flow, with velocity (U,, 0) at infinity, past a 
bluff object whose boundary in the xy-plane is characterized by 

x + iy = 1 [( 1 + J.)z + (1 - J.)e-2io/z], where i = J(- 1) and IzI = 1. (1) 

According to (I), the geometry is an ellipse with the parameter J. indicating the aspect ratio of the 
short axis over the long axis (hence 0 d A d 1). The other parameter 0 indicates the angle of attack to 
the incoming flow (see Figure 1 for a sketch). In what follows, 0 will be mentioned in degrees with a 
tacit conversion to radians. Setting (A, 0) = (1,90"), for example, yields flow past a circular cylinder. 

Figure 1. Illustration of Theorem 1 for wall vorticity conditioning 
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Figure 2. Sketch of prowake, orthogonal grid system 

The flow is governed by the Navier-Stokes equations, which after non-dimensionalization are 
written in terms of vorticity (0) and streamfunction ($) as 

2 
R W f  + $y-ox - A a y  = -(-on + Ww)9 (2) 

$ = $ X Y  = $ = 0 on object's boundary for t > 0, (4) 

$(x,y, t = 0) = $"(x,y) = potential flow. (6 )  

In equations (1 H6) the underlying length scale is D/2 ,  where D denotes the largest distance between 
any two points located on the object's boundary (e.g. D =diameter of a circle or long axis of an 
ellipse), while the Reynolds number R is defined as R = DU,/v, where v stands for the kinematic 
viscosity. 

It has been shown that a generally feasible approach to solve equations ( 2 x 6 )  is direct numerical 
simulation. Finite difference schemes are adopted here. To facilitate the associated computations, a 
body-fitted orthogonal co-ordinate system is desired, which is constructed through a sequence of 
transformations as stated below. 

The sequence was started with equation (I) ,  by which the fluid region in the z-plane becomes 
exterior to a unit circle. For high-Reynolds-number flow problems, (1) is followed by the 'prowake' 
transformation z = z([) (see Figure 2 for a sketch), in which 

i iT 
2 ?I 

[ =  [ + i;i = -(z - l/z) + -log(z) for - r<&r and i 2 0 .  (7) 
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Figure 3. Early evolution of flow past an impulsively started circular cylinder at R = 1000. (aHc) Streamline plots at 
t = 2 ,  3, 4. (d) Radial velocity along symmetry axis behind cylinder at t =  1, 2, 3,4, 5. Shown in the inset are the drag 

coefficient (C,) and wake length (L/D).  ~ , present; symbols, Reference 6 

To achieve the desired resolution (= U ( l / J R ) )  in the proximity of the object economically, a 
quadratic scaling in the ij-direction is introduced: 

i j  = ?(a + bq) =- f (q) ,  q 2 0, where a and b are positive constants. (8) 

By virtue of (l), (7) and (8) the Navier-Stokes equations (2) and (3) are transformed into the 
following version. For (<, q)  E [-r, r] x [0, q,], 

In (9) and (lo), J = a(x, y)/a(C, i )  is the Jacobian of the conformal mapping composed of (1) and (7), 
whilef andf” denote the first and second derivatives off defined in (8) respectively. Note that in the 
sequel J is modified to denote the combined term Jf”. 
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Time -1.20 2.28 '.' 
Figure 4. Early evolution of flow past an impulsively started circular cylinder at R=3000. (a)-(c) Streamline plots at 
t = 2 ,  3, 4. (d) Radial velocity along symmetry axis behind cylinder at t =  1,2, 3, 4, 5.  Shown in the inset are the drag 

coefficient (C,) and wake length (L/D). ~ , present; symbols, Reference 1 

According to such a co-ordinate transformation, the boundary conditions (4) and ( 5 )  are written as 
(note that we suppress the t-variable for the moment) 

a $ / a t l = $ = O  forq=Oand - r G < G r ,  (1 1) 
+(-r, q )  = *(r, and +r, V )  = o(r, q) for O G V < ~ * ,  

(12) 
* ( ~ r r , ~ ) = * " ( ~ t , q ) a n d o ( f r , q )  = o  forq*<q<q,, (13) 

(14) 

where, in (7), lz'(C)l = 00 at C = f r + if(q*), 

&)/&,I = at+V/&,~ and o is updated through (9) by the explicit Euler scheme 
for q = q ,  and - r G < G r .  

The outflow condition (14) has been shown to perform well in this work. Several arguments about 
optimizing the downstream boundary condition can be found in References 11 and 12. 

3. THE FINITE DIFFERENCE SCHEME 

First we deal with the transformed Poisson equation (10) together with the boundary conditions (1 1)- 
(14), in which we drop the condition a*/% = 0 along the object's boundary. This no-slip condition 
will be respected later in conjunction with the wall vorticity generation. 
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Figure 5. Early evolution of flow past an impulsively started circular cylinder at R = 9500. (aHc) Streamline plots at 
t = 2, 3, 4. (d) Radial velocity along symmetry axis behind cylinder at t = 1.2, 2, 2.8, 3.6, 4. Shown in the inset are the drag 

coefficient (C,) and wake length (L/D) .  ___ , present; symbols, Reference 1 

Centred differencing is applied to discretize (10). The resultant system of algebraic equations is 
quite large for high-Reynolds-number flow. In order to attain a satisfactory rate of convergence, we 
employ a multigrid approach. The basic ingredients of our three-grid iterative method are a standard 
double-coarsening strategy on the grid, a five-point central difference formula for each grid, 
incomplete LU factorization as the smoothing operator and standard nine-point prolongation and 
restriction scheduled in a ‘saw-tooth’ manner. See Reference 13 for details of this framework. 

Next we implement the no-slip condition t,bq = 0 at q = 0. A common practice is to incorporate it 
into the approximation of $qq at q = 0 when one wants to estimate the wall vorticity. However, in the 
possible presence of high curvature along the object’s boundary, such as ;1 << 1 in (l), it has been 
shown in our previous  work^^"^ that a better alternative to respect this condition is the following 
projection approach. 

Theorem 1 

Let fi be a neighbourhood around the object under consideration. The associated boundary 
82 = B, U B,  is equipped with a local co-ordinate system as shown in Figure 1. If $ and o are such 
that A$ = -o in R and $ = constant B,, then the no-slip condition a$/& = 0 on B, is equivalent to 

og,dxdy + fB, (gn - $ %)dr = 0 for n = 0,  1 , 2 ,  . * . , 
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Figure 6.  Early evolution of flow past an impulsively started circular cylinder at R = 4 x lo4. (a)-(d) Streamline plots 
at t = 2 ,  3, 4, 5 

where the auxiliary functions g, are given by the respective real and imaginary parts of 
exp[im([ + l-)/r)] via the co-ordinate transformation (1) and (7). 

Using a numerical quadrature such as the trapezoidal rule, equation (1 5 )  can be put into the discrete 
(matrix) form 

A , .  0, + A .  w + g .  II/ = 0. (16) 

Note that the contribution of the wall vorticity oo to the area integral is counted separately from that 
due to the interior vorticity o. The reason for so doing is that in our approach the no-slip condition 
will be implemented as the introduction of a 'vortex-sheet' correction, given the interior vorticity and 
streamfimction merely satisfying the no-flux condition. Namely, we ask wo to satisfy 

0, = -&'(A. 0 + g . $). (17) 

The matrix A, is composed of an orthogonal matrix representing the discrete Fourier transform and 
a diagonal matrix representing the local area elements along the line q = 0, i.e. the object's boundary. 
Thus the inverse A;' can be obtained with ease and equation (17) just contains hlly vectorizable 
matrix-vector multiplications. 

Now we proceed to discretize the transformed vorticity transport equation (9). Spatial 
dlfferentiations are all approximated by centred differencing as usual, except for the convection 
terms wt and w, appearing on the left-hand side of (9). To these terms the so-called convection 
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Table I. Summary of Reynolds number, grid size, extent of computational domain and time step 

Re Grid ( 5  x v )  X-min X-max Y-min Y-max At 

1000 121 x 129 -11.37 96.92 -32.28 32.29 0.050 
3000a 121 x 73 -11.37 18.14 -23.84 23.84 0440 
9500 181 x 89 -11.37 11.67 -20.60 20.60 0.025 
4 x lo4 241 x 193 -11.37 110.94 -32-70 32.70 0.010 

a Early stage only 

boundedness criterion (CBC) proposed by Gaskell and Lad4 is applied in order to suppress the 
spurious oscillations brought about by the centred difference when the employed grid is not fine 
enough. 

The basic idea behind the CBC is to improve from the finite volume point of view the well-known 
first-order upwind scheme in those situations where the related three nodal values of w, say 
(uiP2, j ,  j ,  wi, j )  or (wi, j - 2 ,  mi, j - l ,  ui, j )  used to predict the interfacial values wi-l/2 or oi, j-l/2, 
are in the monotone regime. If the monotone condition holds, we try to recover the third-order 

"." 
0 0  0.2 0 4  0.6 0.8 1.0 

Time 
0.0 0.2 0.4 0.6 0.8 1.0 

Time 

Time Time 
Figure 7. Early history of drag coefficient (C,) for flow past a circular cylinder at R = (a) 1O00, (b) 3000, (c) 9500, (d) 4 x lo4. 

, present; 0,  Reference 18 
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Figure 8. Symmetry breaking and onset of alternate vortex shedding for flow past a circular cylinder at R =4 x lo4. (aHd) 
Streamline plots at r = 12, 16, 20, 24 

accuracy of the QUICK scheme.', This effort amounts to constructing a function y(x) in terms of a 
normalized variable x such that 0 <x< 1, departing from the first-order upwind fix) = x to the 
QUICK scheme y(x) = + 3x/4, under the constraints x <fix) < 1, y(0) = 0 and y( 1) = 1. 

Various ways to construct such a function y(x) have been discussed for example in References 14 
and 16. We have noted that their respective merits are sometimes application-dependent. Although 
fix) is non-linear in general, one does not expect an involved expression. The following formula has 
been shown to be quite effective in our previous work" 

y5(x)=4x- l l ~ + 1 8 x 3 -  14x4+4x5, O<x<I. (18) 

Besides satisfying the aforementioned basic constraints, the function y, has the following features: 
(a) y!!(;) = y&) = a, i.e. tangent to the QUICK line at the crucial point (i , i); (b) &( 1) = 0, i.e. 
mimicking the cut-off of the QUICK interpolation near the right end in order to satisfy monotonicity. 

Based on the above discussion, the discretized version of (9) is denoted by 

Jw, + C($, w,, W )  = (Dc + D,)o. (19) 

In (19) the symbol C(.,  -, -) denotes the convection term depending on $, W, and o in a non-linear 
manner; Dt and D, are linear diffusion operators (including the coefficient 2/R) in directions < and q 
respectively. Note that the boundary conditions (1 1)-(14), other than specifying the wall vorticity W, 

can be discretized with ease and hence will be skipped for simplicity of expression. 
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Figure 9. Cycle of alternate vortex shedding for fully developed flow past a circular cylinder at R = 4 x lo4. (a)-(f) Streamline 
plots at t=96 ,  98, 100, 102, 104, 105 

According to (19), the advancement of the interior vorticity o, and (li and o, in turn, from time t" 
to t"+l with a time step At is summarized as follows. Note that the superscripts attached to $, a,, w, 
etc. indicate the time dependence of these data. 

Algorithm A 

Al. Given o", solve (10) for $n with the proposed multigrid scheme. Then plzice w" and $" into 
(17) to get w!. 
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(a) Re = 1O00, St#l= 0.22, Mean Drag = 1.39 (present); 1.37 (FEM); 1.0 (experiment) 

0 
Time 
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Figure 10. Long-term history of drag (C,) and lift (C,) coefficients for flow past a circular cylinder at R = (a) 1000, @) 4 x 1 O4 
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4:Re=3000 

0 40 80 120 
Time 

Figure 1 1 .  Long-term history of forward separation angle for flow past a circular cylinder at R = 1000 (-0-) and 4 x lo4 
(- ). Shown in the inset are the early results for R = 1000 (V), 3000 (O), 9500 (A), 4 x lo4 (a) 
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(b) t = 1.5 m 

c) t = 2.0 - 
d) t = 3.0 725z-3 

Figure 12. Streamlines of flow past an impulsively started elliptical cylinder with (A ,  0) = (0.5, 90") at R = 9500. (aHd) Early 
evolution from /?- to a-phenomenon at t = 1, 1.5, 2, 3 

A2. Compute C" = C($", w:, a") with the proposed CBC scheme and D" = (Dr + D,)o" in 

A3. Define p = At/21 .  Apply the vectorized Thomas alg~ri thm'~ twice to solve 
which wz is used. 

( I  - Or) . ( I  - p D J 0  = p(0" - C") (20) 

for W, with the wall boundary condition Go = 0. 
A4. Set 
A5. Compute Cn+'/2 = C(11/"+'/2, w : + ' / ~ ,  (1 - &on + 

again. The parameter fl is such that OGflG 1. 
A6. Apply the vectorized Thomas algorithm twice again to solve 

= w" + W. Then repeat step A1 with superscript n + 4 instead. 
with the proposed CBC scheme 

for 0, with the wall boundary condition Go = y ( ~ : + ' / ~  - a:). The parameter y is such that 
OGyG2. 
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Figure 13. Strealines of flow past an impulsively started elliptical cylinder with (,LO) = (0.5.50") at R=9500. (aHf) Early 
development of wake behind the cylinder at I =  1.5, 2.5, 3.5,4.5, 5.5,6.5 

A7. Set w"+' = w" + (;J and complete the algorithm for one time step. To continue, go back to 

Note that two relaxation parameters /3 and y are introduced in Algorithm A. If /3 = 1 and y = 2, this 
algorithm corresponds to applying the midpoint rule to the convection part and the Crank-Nicolson 
scheme to the di&sion part. Therefore a second-order formal accuracy in time is attained. However, 
we find that the corresponding stability is not as good as we want, since the allowable time step is too 

step A 1. 
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Figure 14. Strealines of flow past an impulsively started elliptical cylinder with ( A ,  0) = (0.1,90") at R = 1000. (aHc)  Early 
development of wake behind top tip of cylinder at r = 0.5, 1 .2 .  (d) Early growth of main wake length (LID) against time 

Figure IS. Streamlines of flows past an impulsively started elliptical cylinder with (1.0) = (0.1,W) at R = IOOO. (aHd) 
Early development of wake behind cylinder at r = 0.5, 1.2. 3 



FLOW PAST A BLUFF OBJECT 725 

Figure 16. Streamlines of fully developed flow past an elliptical cylinder with (i, 0) = (0.1.90") at R = 1OOO. (a)-(d) Near- 
wake structure along with alternate vortex shedding at ? = 86. 88, 90, 93 

Figure 17. Streamlines of fully developed flow past an elliptical cylinder with ( A ,  0) = (0.1.60") at R = 1000. (aHd) Near- 
wake structure along with alternate vortex shedding at ?= 85, 87, 89, 90 
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Figure 18. Long-term history of drag (CD), lift (C,) and moment (C,) coefficients for flow past an elliptical cylinder with 
L = 0.1, R = 1OOO. Angle of attack 0 =(a) SO", (b) 60°, (c) 90" 

small to perform long-term simulations. A simple remedy, at the sacrifice of formal accuracy, is to 
relax p and y(j? = y = 0.8, say). Significant improvement in stability has been observed by this 
procedure. 

In view of (20) and (21) the matrices related to Z - @Ie and I - @,, are time-independent if At is 
fixed. Therefore a more efficient use of the Thomas algorithm is achieved in comparison with AD1 
s~hemes. '~  We shall term Algorithm A a semi-explicit scheme. 
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Figure 19. Vorticity contours for fully developed flow past an elliptical cylinder with (A, Q) = (0.1.90") at R = 1000. ( a x d )  
Snapshotsatr=105, 110, 115, 120 

During the simulation an important output is the fluid dynamic quantities such as drag, lift and 
moment. For high-Reynolds-numbers flow the essential part of each quantity is due to the surface 
pressure and is calculated by the following thereom which has been shown in our previous  work^^*'^ 
to yield smoother results than those yielded by the conventional approach. 
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Theorem 2 

Let Q B ,  and B, be as shown in Theorem 1 and let w and (CI denote the vorticity and 
streamfunction respectively. Then the drag, lift and moment exerted by the non-dimensional surface 
pressure can be expressed as 

The auxiliary function cp in (22) satisfies the partial differential equation 

cp,+cpf l=O in51, cp = O  onB,, cp=g onB,, 

where g(x,y) = -y for drag, x for lift and (2 +?)I2 for moment. 

The skin hction part of these quantities is handled as usual: 

(drag, lift, moment), = a(&, dy, xdy - ydx). (24) 

Note that the closed integral is done counterclockwise. The drag, lift and moment coefficients are 
defined as 

In the denominators (25), p,  U, and D stand for the fluid density, the flow speed at infinity and the 
diameter of the physical object respectively. The long-term history of these coefficients can be used 
to assist the estimation of vortex-shedding frequency, if it occurs. The Strouhal number St is defined 
as 

St = frequency . D sin @/Urn, (26) 

where 0 denotes the angle of attack. Note again that 0 is input in degrees with a tacit conversion to 
radians. By convention, 0 = 90” for flow past a circular cylinder. 

For the initial flow field over a circular cylinder the following analytic result adapted from 
Reference 18 is used to check the accuracy of our numerical results: 

(27) CD = 4J(27t/Rt) + 27t(9 - 15/J7t) /R,  0 < t < 1 .  

4. WORKED EXAMPLES AND DISCUSSON 

We begin with the de fact0 standard test of flow past a circular cylinder. For Reynolds number R up to 
1 O4 there exist several oft-cited numerical and physical experiments in the literature, although most 
results are merely concerned with the early-stage development. In what follows, we shall report both 
the early-stage and the long-term simulations for R = 1000, 3000, 9500 and 4 x lo4. A Convex 
C3420 vector computer was used. 

Figure 2 presents a sketch of our prowake, orthogonal grid system. Shown in Table 1 are the grid 
( 5  x q)  size, the extent of the computational domain and the time step (At) we used in conjunction 
with different value of R .  The cylinder is centred at (0, 0) and is of radius unity. Along with our 
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simulation of the early-stage flow development the reference data are mainly from References 1, 2 
and 6. In view of Table I the time step associated with our semi-explicit scheme is comparable with 
that using AD1 and backward Euler  scheme^.'.^ 

Figures 3(a)-3(c) present the evolution of streamline patterns for flow at R = 1000. We did not 
assume any symmetry condition on flow problems related to a circular cylinder, although it more or 
less appears so. The evolution from a pair of main eddies to the so-called a-phenomenon' is clearly 
shown. Figure 3(d) presents the radial velocity along the symmetry axis behind the cylinder at 
dimensionless times t = 1,2 ,3 ,4  and 5. Shown in the inset are the corresponding drag coefficient 
(C,) and wake length (LID). Symbols in this figure stand for the reference data from Reference 6. 
Similar time evolution for flow at R = 3000 is shown in Figures 4(a)-(d), but with reference data from 
Reference 1. 

Figures 5(a)-5(c) present the streamline patterns for flow at R = 9500. The evolution from the so- 
called b-phenomenon' to a pair of main eddies plus a multiplication of secondary vortices is clearly 
shown. Figure 5(d) presents the radial velocity along the symmetry axis behind the cylinder at 
dimensionless times t = 1.2,2.0,2-8,3.6 and 4.0. Shown in the inset are the corresponding drag 
coefficient (C,) and wake length (LID). Symbols in this figure stand for reference data from 
Reference 1. Such a type of time evolution is more prominent for flow at R = 4  x lo4, as shown in 
Figures 6(a)-6(d). 

According to these demonstrations, a good agreement either with physical experiments' or with 
higher-order-accurate numerical is established. A further check is presented in Figures 
7(a)-7(d), in which the early history of the drag coefficient (C,) is compared with the analytic result 
(27) from Reference 18. Again a good agreement is established. 

Next we proceed to the long-term simulation. The rather symmetric evolution of the flow patterns 
as shown in Figures 3-6 will continue for a long while before breakdown due to the wake 
instability. After that it evolves into a pattern of alternate vortex shedding. Figures 8(a-(d) show 
the outset of this phenomenon for flow at R = 4  x lo4, while Figures 9(a)-9(f) show a fully 
developed case. 

Figures lO(a) and 10(b) present the long-term history of the drag and l i f t  coefficients for flow at 
R = 1000 and 4 x lo4 respectively. The computed Strouhal numbers, 0.22 for both cases, are in 
good agreement with the value 0.21 extrapolated from the following empirical formula of 
Roshko: l 9  

St = 0.212(1 - 21.2/R), 50 < R < 150. (28) 

The mean drag coefficients (1.39 and 1.62 for R =  1000 and 4 x lo4 respectively) are similar to 
those obtained by a high-order-accurate finite element method (1.37 and 1.56 respectively,20 but 
larger than the experimental values (1.0 and 1.25 respectively).2' Such a discrepancy is due to the 
two-dimensional, laminar simulation failing to represent the growth of turbulence in the wake. 

Figure 1 1 presents the long-term history of the forward separation angle where the surface vorticity 
underwent the first sign change away from the front stagnation point (1 80" means the rear stagnation 
point) for flow at R =  lo00 and 4 x The early history is blown up in the inset. The computed 
mean separation angles (99.6" and 83.1" respectively) are consistent with the results (102.6" and 
84.4" respectively) of Thoman and S~ewczyk,~  but we observe a more prominent (regular) oscillation 
(- f6" for R = 1000, - f8" for R = 4 x lo4) in respect to the alternate vortex shedding. We believe 
that this is a correction to that observed by the first-order upwinding in Reference 4. 
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According to these demonstrations, a good performance of our scheme in long-term simulation is 
also established for flow past a circular cylinder. In the following we shall show a number of tests on 
flow past an elliptical cylinder in which the aspect ratio (I.)  and the angle of attack (0) are the two 
controlled parameters. 

Figures 12(a)-l2(d) present the early-stage development of flow past an elliptical cylinder with 
(A, 0) = (0.5,90") at R = 9500. Again the evolution from the fl- to the a-phenomenon is clearly 
shown. If the cylinder is oblique to the incoming flow, say 0 = 50", we observe the time evolution 
from a pseudo-fl-phenomenon to a sequence of vortex merging (as indicated by A, B and C) to a main 
wake plus a multiplication of secondary vortices taking place behind the leading edge, along with the 
fist vortex shedding from the trailing edge, see Figures (13a)-13(f). 

Note that as the aspect ratio (A) is decreased, high curvature is present along the cylinder and forms 
a challenge to numerical stability in terms of the allowable time step (At). This is because the related 
Jacobian J << 1 in (19). Owing to the limitation on computer resources, we shall reduce the Reynolds 
number in the remaining demonstrations. 

Figure 14(a)-l4(c) present the early stage of flow past an elliptical cylinder with 
( I , ,  0) = (0.1,90°) at R =  1000. The associated time step is At = 1.25 x lop3. Unlike the flow 
past a circular cylinder, we merely observe the growth and decay of an isolated secondary eddy 
behind either tip of the ellipse. Meanwhile, the growth of the main eddy is much faster than that 
behind a circular cylinder. As shown in Figure 14(d), the early time evolution of the wake length 
(LID)  is approximately of the form 

LID 0.48t0'", 0 < t < 1. (29) 

The scene of a main eddy plus a pair of secondary vortices (mimicking the r-phenomenon) is 
observed when the angle of attack is other than 90". Figures 15(a)-15(d) show such an evolution 
behind the leading edge of an elliptical cylinder with 0 = 6 0 ,  along with the first vortex shedding 
from the trailing edge. 

On the other hand, such a pseudo-a-phenomenon is observed to appear alternately behind the tips 
of the elliptical cylinder for fully developed flow at a rather arbitrary angle of attack. This is 
evidenced in Figures 16(a)-l6(d) and 17(abl7(d). 

Figures 18(abl8(c) present the long-term history of the drag, lift and moment coefficients for flow 
past an elliptical cylinder with A = 0.1 and 0 = 50", 60" and 90" respectively at R = 1000. The 
respective Strouhal numbers St, as defined in (26), are 0.172,0.150 and 0.151. For 0 d50" this 
number is similar to that obtained for R< 400 by Chou' and Lugt and Haussling.' For 0 2 60" we see 
that this number agrees with the wind tunnel experiment (0.148 f 0.003) of flow past a flat plate (i.e. 
i, = 0) by Fage and Johansen.22 For the 90" case the mean drag coefficient (3.30) is also comparable 
with a recent numerical result (- 3.7) of flow past a flat plate by Najjar and These values 
are again much larger than the experimental value (- 2)22 owing to the assumption of two- 
dimensionality. 

Finally, Figures 19(a)-19(d) present several stages of overall vorticity contours for flow past a 
normal thin cylinder (i.e A = 0.1 .0  = 90") at R = 1000. It shows that a regular spacing among 
shedded vortices occurs in the near wake only. Complex vortex interactions such as merging or 
pairing between vortices of like sense (indicated in Figure 19 by A + B and C + D respectively) are 
observed in the far wake. These observations might be too crude owing to the numerical viscosity 
introduced in the far wake. A refinement can be drawn from the well-resolved simulations of 
Reference 23 for flow past a normal plate, but it is too expensive to perform by our computing 
facilities. 
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5. CONCLUSIONS 

We have proposed a semi-explicit finite difference scheme to simulate unsteady two-dimensional 
flow past a bluff object at high Reynolds number. In conjunction with the streamfimction-vorticity 
formulation of the Navier-Stokes equations, the interior vorticity, streamfunction and wall vorticity 
are updated in turn for each time step. Such a decoupling results in an efficient use of rnultigrid and 
vectorization techniques. The numerical performance of this scheme has been shown to be 
comparable with that of other more sophisticated methods. 
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